Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741 Garching, Germany
Abstract:Up to 150000 asteroids will be visible in the images of the ESA Euclid space telescope, and the instruments of Euclid offer multiband visual to near-infrared photometry and slitless spectra of these objects. Most asteroids will appear as streaks in the images. Due to the large number of images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the StreakDet software was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect asteroid streaks in Euclid images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with simulated Euclid images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different Euclid exposures to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally, the deep-learning pipeline can detect asteroids 0.25-0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement, particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which involves linking detections across multiple exposures.
Abstract:Convolution Neural Networks trained for the task of lens finding with similar architecture and training data as is commonly found in the literature are biased classifiers. An understanding of the selection function of lens finding neural networks will be key to fully realising the potential of the large samples of strong gravitational lens systems that will be found in upcoming wide-field surveys. We use three training datasets, representative of those used to train galaxy-galaxy and galaxy-quasar lens finding neural networks. The networks preferentially select systems with larger Einstein radii and larger sources with more concentrated source-light distributions. Increasing the detection significance threshold to 12$\sigma$ from 8$\sigma$ results in 50 per cent of the selected strong lens systems having Einstein radii $\theta_\mathrm{E}$ $\ge$ 1.04 arcsec from $\theta_\mathrm{E}$ $\ge$ 0.879 arcsec, source radii $R_S$ $\ge$ 0.194 arcsec from $R_S$ $\ge$ 0.178 arcsec and source S\'ersic indices $n_{\mathrm{Sc}}^{\mathrm{S}}$ $\ge$ 2.62 from $n_{\mathrm{Sc}}^{\mathrm{S}}$ $\ge$ 2.55. The model trained to find lensed quasars shows a stronger preference for higher lens ellipticities than those trained to find lensed galaxies. The selection function is independent of the slope of the power-law of the mass profiles, hence measurements of this quantity will be unaffected. The lens finder selection function reinforces that of the lensing cross-section, and thus we expect our findings to be a general result for all galaxy-galaxy and galaxy-quasar lens finding neural networks.