Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
This paper presents the integration of flow field reconstruction, dynamic probabilistic modeling, search control, and machine vision detection in a system for autonomous maritime search operations. Field experiments conducted in Valun Bay (Cres Island, Croatia) involved real-time drifter data acquisition, surrogate flow model fitting based on computational fluid dynamics and numerical optimization, advanced multi-UAV search control and vision sensing, as well as deep learning-based object detection. The results demonstrate that a tightly coupled approach enables reliable detection of floating targets under realistic uncertainties and complex environmental conditions, providing concrete insights for future autonomous maritime search and rescue applications.
Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions.
The growing capability of video generation poses escalating security risks, making reliable detection increasingly essential. In this paper, we introduce VideoVeritas, a framework that integrates fine-grained perception and fact-based reasoning. We observe that while current multi-modal large language models (MLLMs) exhibit strong reasoning capacity, their granular perception ability remains limited. To mitigate this, we introduce Joint Preference Alignment and Perception Pretext Reinforcement Learning (PPRL). Specifically, rather than directly optimizing for detection task, we adopt general spatiotemporal grounding and self-supervised object counting in the RL stage, enhancing detection performance with simple perception pretext tasks. To facilitate robust evaluation, we further introduce MintVid, a light yet high-quality dataset containing 3K videos from 9 state-of-the-art generators, along with a real-world collected subset that has factual errors in content. Experimental results demonstrate that existing methods tend to bias towards either superficial reasoning or mechanical analysis, while VideoVeritas achieves more balanced performance across diverse benchmarks.
Reliable 3D object detection is fundamental to autonomous driving, and multimodal fusion algorithms using cameras and LiDAR remain a persistent challenge. Cameras provide dense visual cues but ill posed depth; LiDAR provides a precise 3D structure but sparse coverage. Existing BEV-based fusion frameworks have made good progress, but they have difficulties including inefficient context modeling, spatially invariant fusion, and reasoning under uncertainty. We introduce MambaFusion, a unified multi-modal detection framework that achieves efficient, adaptive, and physically grounded 3D perception. MambaFusion interleaves selective state-space models (SSMs) with windowed transformers to propagate the global context in linear time while preserving local geometric fidelity. A multi-modal token alignment (MTA) module and reliability-aware fusion gates dynamically re-weight camera-LiDAR features based on spatial confidence and calibration consistency. Finally, a structure-conditioned diffusion head integrates graph-based reasoning with uncertainty-aware denoising, enforcing physical plausibility, and calibrated confidence. MambaFusion establishes new state-of-the-art performance on nuScenes benchmarks while operating with linear-time complexity. The framework demonstrates that coupling SSM-based efficiency with reliability-driven fusion yields robust, temporally stable, and interpretable 3D perception for real-world autonomous driving systems.
Millimeter wave integrated sensing and communication (ISAC) systems are being researched for next-generation intelligent transportation systems. Here, radar and communication functionalities share a common spectrum and hardware resources in a time-multiplexed manner. The objective of the radar is to first scan the angular search space and detect and localize mobile users/targets in the presence of discrete clutter scatterers. Subsequently, this information is used to direct highly directional beams toward these mobile users for communication service. The choice of radar parameters such as the radar duty cycle and the corresponding beamwidth are critical for realizing high communication throughput. In this work, we use the stochastic geometry-based mathematical framework to analyze the radar operating metrics as a function of diverse radar, target, and clutter parameters and subsequently use these results to study the network throughput of the ISAC system. The results are validated through Monte Carlo simulations.
Detecting objects from UAV-captured images is challenging due to the small object size. In this work, a simple and efficient adaptive zoom-in framework is explored for object detection on UAV images. The main motivation is that the foreground objects are generally smaller and sparser than those in common scene images, which hinders the optimization of effective object detectors. We thus aim to zoom in adaptively on the objects to better capture object features for the detection task. To achieve the goal, two core designs are required: \textcolor{black}{i) How to conduct non-uniform zooming on each image efficiently? ii) How to enable object detection training and inference with the zoomed image space?} Correspondingly, a lightweight offset prediction scheme coupled with a novel box-based zooming objective is introduced to learn non-uniform zooming on the input image. Based on the learned zooming transformation, a corner-aligned bounding box transformation method is proposed. The method warps the ground-truth bounding boxes to the zoomed space to learn object detection, and warps the predicted bounding boxes back to the original space during inference. We conduct extensive experiments on three representative UAV object detection datasets, including VisDrone, UAVDT, and SeaDronesSee. The proposed ZoomDet is architecture-independent and can be applied to an arbitrary object detection architecture. Remarkably, on the SeaDronesSee dataset, ZoomDet offers more than 8.4 absolute gain of mAP with a Faster R-CNN model, with only about 3 ms additional latency. The code is available at https://github.com/twangnh/zoomdet_code.
In hierarchical multi-label classification, a persistent challenge is enabling model predictions to reach deeper levels of the hierarchy for more detailed or fine-grained classifications. This difficulty partly arises from the natural rarity of certain classes (or hierarchical nodes) and the hierarchical constraint that ensures child nodes are almost always less frequent than their parents. To address this, we propose a weighted loss objective for neural networks that combines node-wise imbalance weighting with focal weighting components, the latter leveraging modern quantification of ensemble uncertainties. By emphasizing rare nodes rather than rare observations (data points), and focusing on uncertain nodes for each model output distribution during training, we observe improvements in recall by up to a factor of five on benchmark datasets, along with statistically significant gains in $F_{1}$ score. We also show our approach aids convolutional networks on challenging tasks, as in situations with suboptimal encoders or limited data.
Detecting symmetry is crucial for effective object grasping for several reasons. Recognizing symmetrical features or axes within an object helps in developing efficient grasp strategies, as grasping along these axes typically results in a more stable and balanced grip, thereby facilitating successful manipulation. This paper employs geometrical moments to identify symmetries and estimate orthogonal transformations, including rotations and mirror transformations, for objects centered at the frame origin. It provides distinctive metrics for detecting symmetries and estimating orthogonal transformations, encompassing rotations, reflections, and their combinations. A comprehensive methodology is developed to obtain these functions in n-dimensional space, specifically moment \( n \)-tuples. Extensive validation tests are conducted on both 2D and 3D objects to ensure the robustness and reliability of the proposed approach. The proposed method is also compared to state-of-the-art work using iterative optimization for detecting multiple planes of symmetry. The results indicate that combining our method with the iterative one yields satisfactory outcomes in terms of the number of symmetry planes detected and computation time.
As a fundamental data mining task, unsupervised time series anomaly detection (TSAD) aims to build a model for identifying abnormal timestamps without assuming the availability of annotations. A key challenge in unsupervised TSAD is that many anomalies are too subtle to exhibit detectable deviation in any single view (e.g., time domain), and instead manifest as inconsistencies across multiple views like time, frequency, and a mixture of resolutions. However, most cross-view methods rely on feature or score fusion and do not enforce analysis-synthesis consistency, meaning the frequency branch is not required to reconstruct the time signal through an inverse transform, and vice versa. In this paper, we present Learnable Fusion of Tri-view Tokens (LEFT), a unified unsupervised TSAD framework that models anomalies as inconsistencies across complementary representations. LEFT learns feature tokens from three views of the same input time series: frequency-domain tokens that embed periodicity information, time-domain tokens that capture local dynamics, and multi-scale tokens that learns abnormal patterns at varying time series granularities. By learning a set of adaptive Nyquist-constrained spectral filters, the original time series is rescaled into multiple resolutions and then encoded, allowing these multi-scale tokens to complement the extracted frequency- and time-domain information. When generating the fused representation, we introduce a novel objective that reconstructs fine-grained targets from coarser multi-scale structure, and put forward an innovative time-frequency cycle consistency constraint to explicitly regularize cross-view agreement. Experiments on real-world benchmarks show that LEFT yields the best detection accuracy against SOTA baselines, while achieving a 5x reduction on FLOPs and 8x speed-up for training.
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.